Mutualism Breakdown by Amplification of Wolbachia Genes

نویسندگان

  • Ewa Chrostek
  • Luis Teixeira
چکیده

Most insect species are associated with vertically transmitted endosymbionts. Because of the mode of transmission, the fitness of these symbionts is dependent on the fitness of the hosts. Therefore, these endosymbionts need to control their proliferation in order to minimize their cost for the host. The genetic bases and mechanisms of this regulation remain largely undetermined. The maternally inherited bacteria of the genus Wolbachia are the most common endosymbionts of insects, providing some of them with fitness benefits. In Drosophila melanogaster, Wolbachia wMelPop is a unique virulent variant that proliferates massively in the hosts and shortens their lifespan. The genetic bases of wMelPop virulence are unknown, and their identification would allow a better understanding of how Wolbachia levels are regulated. Here we show that amplification of a region containing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. Using Drosophila lines selected for carrying Wolbachia with different Octomom copy numbers, we demonstrate that the number of Octomom copies determines Wolbachia titers and the strength of the lethal phenotype. Octomom amplification is unstable, and reversion of copy number to one reverts all the phenotypes. Our results provide a link between genotype and phenotype in Wolbachia and identify a genomic region regulating Wolbachia proliferation. We also prove that these bacteria can evolve rapidly. Rapid evolution by changes in gene copy number may be common in endosymbionts with a high number of mobile elements and other repeated regions. Understanding wMelPop pathogenicity and variability also allows researchers to better control and predict the outcome of releasing mosquitoes transinfected with this variant to block human vector-borne diseases. Our results show that transition from a mutualist to a pathogen may occur because of a single genomic change in the endosymbiont. This implies that there must be constant selection on endosymbionts to control their densities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response to: Comment on Rohrscheib et al. 2016 "Intensity of mutualism breakdown is determined by temperature not amplification of Wolbachia genes"

1 School of Natural Sciences, Griffith University, Nathan, Australia, 2 Griffith Research Institute for Drug Discovery, Griffith University, Nathan, Australia, 3 Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Australia, 4 Queensland Brain Institute, The University of Queensland, St. Lucia, Australia, 5 School o...

متن کامل

Intensity of Mutualism Breakdown Is Determined by Temperature Not Amplification of Wolbachia Genes

Wolbachia are maternally transmitted intracellular bacterial symbionts that infect approximately 40% of all insect species. Though several strains of Wolbachia naturally infect Drosophila melanogaster and provide resistance against viral pathogens, or provision metabolites during periods of nutritional stress, one virulent strain, wMelPop, reduces fly lifespan by half, possibly as a consequence...

متن کامل

Comment on Rohrscheib et al. 2016 "Intensity of mutualism breakdown is determined by temperature not amplification of Wolbachia genes"

Rohrscheib et al. (PLOS Pathogens, 2016) [1] discuss the interaction between the pathogenicity of the wMel variant wMelPop, temperature and Octomom copy number. The effect of temperature on wMelPop pathogenicity was already reported in the original work on wMelPop [2]. The absence of pathogenicity at low temperatures was also shown before [3]. We have recently demonstrated, in Chrostek and Teix...

متن کامل

Phylogenomics and Analysis of Shared Genes Suggest a Single Transition to Mutualism in Wolbachia of Nematodes

Wolbachia, endosymbiotic bacteria of the order Rickettsiales, are widespread in arthropods but also present in nematodes. In arthropods, A and B supergroup Wolbachia are generally associated with distortion of host reproduction. In filarial nematodes, including some human parasites, multiple lines of experimental evidence indicate that C and D supergroup Wolbachia are essential for the survival...

متن کامل

Parasitism and mutualism in Wolbachia: what the phylogenomic trees can and cannot say.

Ecological and evolutionary theories predict that parasitism and mutualism are not fixed endpoints of the symbiotic spectrum. Rather, parasitism and mutualism may be host or environment dependent, induced by the same genetic machinery, and shifted due to selection. These models presume the existence of genetic or environmental variation that can spur incipient changes in symbiotic lifestyle. Ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015